Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Viral Hepat ; 29(8): 627-636, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35633088

RESUMO

Hepatitis B virus (HBV) affects over 300 million people across the world and is further associated with the self-digesting process of autophagy. Accordingly, the current study set out to explore the role of transient receptor potential cation channel subfamily M member 2 (TRPM2) in HBV replication. Firstly, Huh-7 cells were transfected with the pHBV1.3 plasmid to detect the expression patterns of TRPM2 and neutrophil cytosolic factor 1 (p47 phox), followed by evaluating the role of TRPM2 in autophagy and HBV replication and exploring the interaction between TRPM2 and p47 phox. Collaborative experiments were further designed to explore the role of p47 phox and autophagy in TRPM2 regulation of HBV replication, in addition to animal experimentation to validate the role of TRPM2/p47 phox axis in vivo. It was found that TRPM2 up-regulation was associated with HBV replication. On the other hand, silencing of TRPM2 inhibited HBV replication and autophagy in vitro and in vivo, as evidenced by reduced HBV DNA load, HBV mRNA, HBeAg and HBsAg, and diminished autophagic spot number, LC3 II/I ratio, Beclin-1 expressions and increased p62 expressions. Mechanistic experimentation illustrated that TRPM2 interacted with p47 phox and positively regulated p47 phox, such that p47 phox up-regulation or use of Rapamycin (autophagy activator) weakened the inhibitory role of silencing TRPM2. Collectively, our findings indicated that HBV infection promotes TRPM2 expression, and TRPM2 interacts with p47 phox to induce autophagy and facilitate HVB replication.


Assuntos
Autofagia , Hepatite B , Canais de Cátion TRPM , Animais , Autofagia/genética , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Replicação Viral
2.
Plant Physiol Biochem ; 151: 223-232, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32234661

RESUMO

Cadmium (Cd) and zinc (Zn) coexist in the environment but interact differently in plants. Cosmos bipinnatus has been potentially considered as a Cd-accumulator. Thus, this study investigated the detoxification mechanism in C. bipinnatus seedlings under Cd, Zn and Cd + Zn stresses. In the present study, the presence of Zn inhibited Cd uptake and translocation, whereas Cd merely hindered Zn uptake. The concentration of Cd in soluble fraction significantly decreased and Cd was bounded to the cell wall in root under Cd + Zn stress. Meanwhile, Zn and Cd mutually decreased their concentrations in the ethanol extractable form (FE) and water extractable form (FW) in roots and shoots. Furthermore, Cd + Zn stress enhanced the activities of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) compared to Cd stress alone. These results suggested that Zn effectively decreased Cd uptake and translocation, changed their subcellular distributions, regulated their chemical forms composition and increased antioxidative enzyme activities, thereby enhancing the tolerance to Cd in C. bipinnatus. This study physiologically revealed the interactive effect of Cd and Zn on the detoxification mechanism of Cd in C. bipinnatus and provided new information on phytoremediation of the heavy metal contaminated soils.


Assuntos
Asteraceae/efeitos dos fármacos , Cádmio , Plântula , Poluentes do Solo , Estresse Fisiológico , Zinco , Asteraceae/metabolismo , Cádmio/metabolismo , Oxirredutases/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Zinco/toxicidade
3.
Cell Biochem Funct ; 38(4): 436-442, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31930529

RESUMO

As small conserved RNAs without a coding function, microRNAs are expressed in multicellular organisms and contribute to the modulation of multiple cellular reactions, such as viral replication, as well as autophagy. microRNAs can regulate host gene expression and inhibit or reinforce hepatitis B virus (HBV) replication. Hepatic cells express miR-155 noticeably. Consequently, our study explored miR-155 modulation of HBV replication and investigated the potential mechanism involved. miR-155 was inhibited on HBV infection. miR-155 transfection remarkably reinforced HBV replication, antigen expression, and progeny secretion in HepG2215 cells. Moreover, miR-155 impaired the inhibition of the cytokine signalling 1 (SOCS1)/Akt/mTOR axis and reinforced HepG2215 autophagy. Additionally, the autophagy inhibitor (3-MA) eliminated HBsAg secretion triggered by miR-155. Taken together, miR-155 reinforced HBV replication by reinforcing SOCS1-triggered autophagy. SIGNIFICANCE OF THE STUDY: The research studied the potential mechanism involved in HBV replication and miR-155 that miR-155 reinforces HBV replication by reinforcing the SOCS1/Akt/mTOR axis-stimulated autophagy, and therefore, it can provide medical practitioners with the inspiration that chronic HBV might be cured or improved by regulating the activation of miR-155 in cells. In the study, the experiments show that autophagy inhibitors (3-MA) counteracted miR-155 contribution to HBV replication, and it might be a practicable way to improve HBV through some therapies that can repress the autophagy in related cells.


Assuntos
Autofagia , Vírus da Hepatite B/fisiologia , MicroRNAs/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Replicação Viral , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...